384 research outputs found

    A study of the effect of forcing function characteristics on human operator dynamics in manual control

    Get PDF
    The effect of the spectrum of the forcing function on the human pilot dynamics in manual control was investigated. A simple compensatory tracking experiment was conducted, where the controlled element was of a second-order dynamics and the forcing function was a random noise having a dominant frequency. The dominant frequency and the power of the forcing function were two variable parameters during the experiment. The results show that the human pilot describing functions are dependent not only on the dynamics of the controlled element, but also on the characteristics of the forcing function. This suggests that the human pilot behavior should be expressed by the transfer function taking into consideration his ability to sense and predict the forcing function

    Motion cue effects on human pilot dynamics in manual control

    Get PDF
    Two experiments were conducted to study the motion cue effects on human pilots during tracking tasks. The moving-base simulator of National Aerospace Laboratory was employed as the motion cue device, and the attitude director indicator or the projected visual field was employed as the visual cue device. The chosen controlled elements were second-order unstable systems. It was confirmed that with the aid of motion cues the pilot workload was lessened and consequently the human controllability limits were enlarged. In order to clarify the mechanism of these effects, the describing functions of the human pilots were identified by making use of the spectral and the time domain analyses. The results of these analyses suggest that the sensory system of the motion cues can yield the differential informations of the signal effectively, which coincides with the existing knowledges in the physiological area

    Colloidal particles at a nematic-isotropic interface: effects of confinement

    Full text link
    When captured by a flat nematic-isotropic interface, colloidal particles can be dragged by it. As a result spatially periodic structures may appear, with the period depending on a particle mass, size, and interface velocity~\cite{west.jl:2002}. If liquid crystal is sandwiched between two substrates, the interface takes a wedge-like shape, accommodating the interface-substrate contact angle and minimizing the director distortions on its nematic side. Correspondingly, particles move along complex trajectories: they are first captured by the interface and then `glide' towards its vertex point. Our experiments quantify this scenario, and numerical minimization of the Landau-de Gennes free energy allow for a qualitative description of the interfacial structure and the drag force.Comment: 7 pages, 9 figure

    Modeling the elastic deformation of polymer crusts formed by sessile droplet evaporation

    Full text link
    Evaporating droplets of polymer or colloid solution may produce a glassy crust at the liquid-vapour interface, which subsequently deforms as an elastic shell. For sessile droplets, the known radial outward flow of solvent is expected to generate crusts that are thicker near the pinned contact line than the apex. Here we investigate, by non-linear quasi-static simulation and scaling analysis, the deformation mode and stability properties of elastic caps with a non-uniform thickness profile. By suitably scaling the mean thickness and the contact angle between crust and substrate, we find data collapse onto a master curve for both buckling pressure and deformation mode, thus allowing us to predict when the deformed shape is a dimple, mexican hat, and so on. This master curve is parameterised by a dimensionless measure of the non-uniformity of the shell. We also speculate on how overlapping timescales for gelation and deformation may alter our findings.Comment: 8 pages, 7 figs. Some extra clarification of a few points, and minor corrections. To appear in Phys. Rev.

    Angular sensitivity of blowfly photoreceptors: intracellular measurements and wave-optical predictions

    Get PDF
    The angular sensitivity of blowfly photoreceptors was measured in detail at wavelengths λ = 355, 494 and 588 nm. The measured curves often showed numerous sidebands, indicating the importance of diffraction by the facet lens. The shape of the angular sensitivity profile is dependent on wavelength. The main peak of the angular sensitivities at the shorter wavelengths was flattened. This phenomenon as well as the overall shape of the main peak can be quantitatively described by a wave-optical theory using realistic values for the optical parameters of the lens-photoreceptor system. At a constant response level of 6 mV (almost dark adapted), the visual acuity of the peripheral cells R1-6 is at longer wavelengths mainly diffraction limited, while at shorter wavelengths the visual acuity is limited by the waveguide properties of the rhabdomere. Closure of the pupil narrows the angular sensitivity profile at the shorter wavelengths. This effect can be fully described by assuming that the intracellular pupil progressively absorbs light from the higher order modes. In light-adapted cells R1-6 the visual acuity is mainly diffraction limited at all wavelengths.

    A hysteretic multiscale formulation for validating computational models of heterogeneous structures

    Get PDF
    A framework for the development of accurate yet computationally efficient numerical models is proposed in this work, within the context of computational model validation. The accelerated computation achieved herein relies on the implementation of a recently derived multiscale finite element formulation, able to alternate between scales of different complexity. In such a scheme, the micro-scale is modelled using a hysteretic finite elements formulation. In the micro-level, nonlinearity is captured via a set of additional hysteretic degrees of freedom compactly described by an appropriate hysteric law, which gravely simplifies the dynamic analysis task. The computational efficiency of the scheme is rooted in the interaction between the micro- and a macro-mesh level, defined through suitable interpolation fields that map the finer mesh displacement field to the coarser mesh displacement field. Furthermore, damage related phenomena that are manifested at the micro-level are accounted for, using a set of additional evolution equations corresponding to the stiffness degradation and strength deterioration of the underlying material. The developed modelling approach is utilized for the purpose of model validation; firstly, in the context of reliability analysis; and secondly, within an inverse problem formulation where the identification of constitutive parameters via availability of acceleration response data is sought

    General dynamical equations of motion for elastic body systems

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76290/1/AIAA-11407-643.pd

    A hysteretic multiscale formulation for nonlinear dynamic analysis of composite materials

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.A new multiscale finite element formulation is presented for nonlinear dynamic analysis of heterogeneous structures. The proposed multiscale approach utilizes the hysteretic finite element method to model the microstructure. Using the proposed computational scheme, the micro-basis functions, that are used to map the microdisplacement components to the coarse mesh, are only evaluated once and remain constant throughout the analysis procedure. This is accomplished by treating inelasticity at the micro-elemental level through properly defined hysteretic evolution equations. Two types of imposed boundary conditions are considered for the derivation of the multiscale basis functions, namely the linear and periodic boundary conditions. The validity of the proposed formulation as well as its computational efficiency are verified through illustrative numerical experiments

    Performance of CUF approach to analyze the structural behavior of slender bodies

    Get PDF
    This paper deals with the accurate evaluation of complete three-dimensional (3D) stress fields in beam structures with compact and bridge-like sections. A refined beam finite-element (FE) formulation is employed, which permits any-order expansions for the three displacement components over the section domain by means of the Carrera Unified Formulation (CUF). Classical (Euler-Bernoulli and Timoshenko) beam theories are considered as particular cases. Comparisons with 3D solid FE analyses are provided. End effects caused by the boundary conditions are investigated. Bending and torsional loadings are considered. The proposed formulation has shown its capability of leading to quasi-3D stress fields over the beam domain. Higher-order beam theories are necessary for the case of bridge-like sections. Various theories are also compared in terms of shear correction factors on the basis of definitions found in the open literature. It has been confirmed that different theories could lead to very different values of shear correction factors, the accuracy of which is subordinate to a great extent to the section geometries and loading conditions. However, an accurate evaluation of shear correction factors is obtained by means of the present higher-order theories
    • …
    corecore